
Building Scenario Graph Using Clustering

 Safaa O. Al-Mamory Hong Li Zhang
School of Computer Science, School of Computer Science,

Harbin Institute of technology, Harbin Institute of technology,
Harbin, China Harbin, China

Safaa_vb@yahoo.com zhl@pact518.hit.edu.cn

Abstract

The increasing use of Network Intrusion Detection

Systems (NIDSs) and a relatively high false alert rate
can lead to a huge volume of alerts. This makes it very
difficult for security analysts to detect long run attacks.
In this paper, we have proposed a system that
represents a set of alerts as subattacks. Then
correlates these subattacks and generates abstracted
scenario graphs (SGs) which reflect attack scenarios.
We have conducted the experiments using Snort as
NIDS with different datasets that contains multistep
attacks. The resulted compressed SGs imply that our
method can correlate related alerts, uncover the attack
strategies, and can detect new variations of attacks.

1. Introduction

When the NIDS detects a set of attacks, it will
generate many alerts that refer to security breaches.
Unfortunately, the NIDS cannot deduce anything from
these separated attacks. So, alert correlation is an
important solution to link separated attacks, to give
alerts another meaning, and to infer attack scenarios.

Alert correlation and analysis are a critical task in
security management. Recently, several techniques and
approaches have been proposed to correlate and
analyze security alerts, most of them focus on the
aggregation and analysis of raw security alerts, and
build attack scenarios.

An interesting method is the work of Ning et al.
[1]. They were a proposed alert correlation model
based on the observation that most intrusions consist of
many stages, with the early stages preparing for the
later ones. They were collected alerts from NIDS,
correlated off-line, and tried to draw a big picture
(through SGs) of what happens in the monitored
network. However, there are some shortcomings
associated with this method:

• The graph explosion problem that occurs in the
generated SGs makes the resulted graphs complex
and hard to understand by the security analyst.

• Huge number of rules used to draw these graphs
which represent prerequisites and consequences of
alerts.

• The affects of the missed attacks by NIDS resulted
in graphs that yield separated SGs.

To address the disadvantages of this method, we
have proposed a system that can address these
problems. The proposed system contains three
components: alert prioritization, alert clustering, and
finally correlation and SG generation. Also Breadth-
First search algorithm was used to find the related
attacks. The resulted SGs show that the proposed
system can correlate related alerts, uncover the attack
strategies, and can effectively simplify the analysis of
large amounts of alerts.

The rest of this paper is organized as follows:
Section 2 presents related work. Section 3 states
system architecture in details. Section 4 presents our
experiments. Section 5 discusses the results and
Section 6 concludes this paper.

2. Related Work

Many researchers propose systems that aim to
build attack scenarios depending on various
techniques. Dain et al. [2] use data mining approach to
combine the alerts into scenarios in real time. The
probabilistic alert correlation [3] based on the
similarities between alerts to correlate them. Measures
are defined to evaluate the degree of similarity between
two alarms.

Qin et al. [4] present an alert correlation system
combining a Bayesian correlation system with a
statistical correlation system using Granger Causality

Test (GCT), a time series-based causal analysis
algorithm. Based on the results of this analysis the
GCT module constructs a correlation graph. As the
structure of the network is predetermined, the Bayes-
based correlation module can discover alerts that have
direct causal relationships according to domain
knowledge.

The work of Ning et al. [1] generates SGs
depending on pre-/post-conditions of an individual
alerts. They propose an alert correlation model based
on the inherent observation that most intrusions consist
of many stages, with the early stages preparing for the
later ones. The correlation model is built upon two
aspects of intrusions that are, Prerequisites (the
conditions for an intrusion to be successful) and
Consequences (the possible outcome of an intrusion).

3. System Architecture

The proposed system is composed of three parts:
Prioritization, Clustering, and Correlation and SG
Generation. As shown in Fig. 1, it takes the raw alerts
from NIDS as input then enhances alerts quality using
alert prioritization. After that alert clustering is
performed using classification and merging, whereas
the similar classes produced from the classification
will be merged. Finally, the last component generates
SGs.

Alert clustering aim is to handle the raw alerts

produced by NIDS due to a certain attack, to produce a
higher-level alert message, called meta-alert (MA),
summarizing the detected attacks characteristics.

A meta-alert is characterized by: alert class, which
is the generalized alert type or subattack name, the
source IP address, the target IP address, and time
information. A reference to the log file of the NIDS is
reported so that further investigation on the results can
be carried out.

3.1. Alert Prioritization

Alert prioritization is performed to assess the
relative importance of alerts generated by the sensors.

This method has to take into account the security
policy and the security requirements of the site where
the correlation system is deployed [5]. Therefore,
prioritizing of alerts aids in substantial reduction of
alert volume.

3.2. Alert Clustering

Classification followed by aggregation is the
clustering we refer to in this paper. The classification
was done by using alerts abstraction. The alert
classification scheme is designed to categorize alerts
into groups that most effectively indicate their stage in
a multistage attack. An alert can be part of multiple
classes. Each class has its name that indicates the
general category (e.g., Host Probe, User Access,
Service Compromise, etc.). Alerts descriptions were
taken from the Snort signature database [6]. Appendix
A summarizes the classification scheme that we have
performed. Aggregation will merge the similar classes
of alerts resulted from classification within a specified
time window.

3.3. Building Scenario Graphs

This component contains alert correlation and SG
generation. In this paper, we have proposed a
technique that builds simple SG using alert clustering
and correlation. The correlation depends on the
Relation Matrix (RM) that contains the similarities
between every two MAs, and few predefined rules.
Three measurements (having numerical values) have
been used which are listed below.

• Msr1: How much Similar_SourceIP(MA1,MA2)? This
feature computes the common similar bits of two IP
addresses from the left, and the result divided by 32.

• Msr2: How much Similar_TargetIP(MA1,MA2)? This
feature is computed such as the previous one.

• Msr3: TargetIP(MA1)=SourceIP(MA2)? This feature
is necessary because sometimes the attacker use one
victim as a step stone to compromise another victim.

It is very important to find the strength between
any two MAs to correlate them together or not.
Computation of that strength depends on the
measurements. The correlation strength will be
computed for all the MAs and these MAs assumed to be
in time order. We suggest representing the correlation
strength of any related MAs in a triangle matrix (i.e.
RM). In this matrix V(1,3), for example, means the
relation between MA1 and MA3 and MA1 comes before
MA3.

Equation (1) was used to compute the correlation
strength value between any two MAs in RM. The

Figure 1. Proposed system components

Is_Successor(j,i) variable in (1) is a Boolean variable
(0 or 1) that determine if MAj can occur after MAi. If
so, the similarities between its features will be
computed, otherwise the value is zero. The Msrk
variable in (1) is the kth measurement's value.

3

(,)
1

_ (,) (,)i j k i j
k

V Is Successor j i Msr MA MA
=

= ∗∑ (1)

The Is_Successor variable can be used to pass the
missed attacks. Assume we have a scenario (A→B→C)
which means three attacks should occur in order. The
Is_Successor can be set to return true if attack A
followed by either B or C to pass the missed attack.

Scenario graphs can be represented by nodes (i.e.
the subattacks) and arcs (i.e. the relation between two
subattacks). The direction of the arcs specifies the
temporal relation. The MA here represents subattack.

Definition1. Given MA contains one or more alerts. Let
SMA be the set of MAs and let t(MA) is the earlier time
in which MA has occurred. Thus it can be said that
Class(MA) is the class of an MA that represents a
subattack within a scenario. In a multistep attack, the
early step of attack prepares for later ones. So we can
build a relation Prepare-for(MA1,MA2) if Class(MA1)
prepare for Class(MA2) in the scenario and t(MA1) ≤
t(MA2). For any given two MAs α and β ∈SMA, α is
called a parent of β and β is called a child of α if the
relation Prepare-for(α, β) is satisfied. It should be
noted that any child can have more than one parent. ■

Applying the Breadth-First search algorithm
depends on the parent-child relationship that has
assumed in definition 1. The pseudo code of the
proposed algorithm that builds SG is shown in Fig. 2.

Any new MA is not always linked to the latest MA

in the generated scenario. Instead, it is connected to the
MAs with which it has a high correlation value in RM.
So, the representation is useful for inference with
multiple goals of attackers. The intention of using

graph representation for the attack scenario is to give
the security analyst an intrinsic view of the network
status.

The Attach_Threshold is used to control the
membership of one MA to the scenarios. When this
threshold is set to be small, the resulted graphs will be
noisy, whereas when its value is set to be high many
real attacks do not join to its SGs.

The generated SGs are concise and abstract. The
references to the log file that exist in MAs can be used
to drill-down and show more details about the low-
level alerts.

4. Experiments

In this section, we report the experiments we
performed to validate the suggested method. The
experiments were conducted with the 2000 DARPA
datasets [7] and Defcon 8 datasets [8]. Snort (Version
2.6.1) [9] was used because it is a freely available
NIDS. The experiments were aimed to evaluate the
effectiveness of our method in constructing attack
scenarios.

4.1 DARPA Dataset Experiment

The 2000 DARPA scenario specific datasets
include LLDOS 1.0 and LLDOS 2.0.2 [7]. LLDOS 1.0
contains a series of attacks in which the attacker probes
the network, probes the active hosts for Solaris
Sadmind, breaks into these hosts with its
vulnerabilities, installs the Msream DDos software on
the three compromised hosts, and actually launches a
DDos attack against an off-site server. We have
performed four sets of experiments, each with either
the DMZ or the inside network traffic of one dataset.

The SGs discovered from the inside zone of
LLDOS 1.0 were shown in Fig. 3. Each node
represents a MA. The text inside the node is the class of
the MA followed by MA ID. There are 15 MAs in this
graph and there are no false alerts with it. Fig. 3
contains three subgraphs from one attacker to three
victims. Three disjoint SGs were generated because
Snort's fails to report some parts of the scenario, i.e.
communication of the DDoS Trojans on the
compromised hosts and DDoS attack.

The extracted SG from LLDOS 2.0.2 is shown in
Fig. 4. It is clear from the mentioned SG that the
attacker compromises one victim (i.e. 172.16.115.20)
and installs mstream master in it. After that, he (from
that victim) probes the network, compromises another
victim (i.e. 172.16.112.50) and installs Mstream agent
in it. Three false alerts correlated with resulted SG and
to distinguish it, we have painted it in another color.

Figure 2. Pseudo-code of SG generation
algorithm

Input: Stream of Meta-Alerts in time order
Output: Scenario graphs

Initialize Queue Q and Graph G;
For each unvisited MA∈ RM {
 Put new unvisited MA into Q and G;
 While (! IsEmpty(Q)) {
 Q.dequeue(ActiveMA);
 Q.enqueue(all unvisited children of ActiveMA);

Set ActiveMA as visited;
 G←G ∪ ActiveMA (Connect ActiveMA to appropriate MAs

in G using Attach_Threshold); }
 Output G as detected scenario graph;
 Set Q and G to empty; }

To test the effectiveness of the proposed system,
we have used the measures of completeness and
soundness defined in [1]. The soundness measurement
(Rs) evaluates the rate of true alerts that appear in SG.
The completeness measure (Rc) looks for missing true
alerts from SG. Equations (2) and (3) show these
measures. The results of two measures are shown in
Table I.

#

#

c o rre c tly co rre lated alerts
R c

re lated alerts
= (2)

#

#

co rrectly co rre lated alerts
R s

c orre lated alerts
= (3)

The missed alerts by NIDS degrade the
effectiveness which was the situation in our
experiment where the missed alerts by Snort affect the

completeness measure results as shown in Table I.
Also the experiment was produced accepted values for
the soundness measure except LLDOS 2.0.2 inside
zone because there are ten incorrectly correlated alerts.
This occurred due to Attach_Threshold value has
reduced to catch all the real alerts.

4.2 Def Con 8 Dataset Experiment

As another case study, we applied our method on
the Def Con 8 Capture The Flag (CTF) datasets [8].
Unfortunately, due to the nature of the Def Con 8 CTF
datasets, we did not have any information about its
scenarios. Thus, we only analyze the resulted SGs and
discuss some of its scenarios.

The resulted alerts from snort (after prioritization
filtering) were 1,847,745 raw alerts. Scanning related
alerts divided into two groups: host probe and service
probe. Host probe alerts account for 1,255,881 (67.9
%) while service probe alerts account for 425,398
(23%). Other alerts include service compromise, DDos,
Dos, etc, account for 166,466 (9.1%). The remaining
MAs after clustering are 170,404.

There are many scenarios in this dataset, so we
will discuss two of them in some details. One of the
generated SGs that contains two scenarios can be seen
in Fig. 5. The attacker in this SG is 10.20.1.237 and the
victim is 10.20.1.12. In the first scenario, the attacker
scans the host to see if it is a live with an ICMP Ping
alert and this appeared as host probe. After that he/she
scans the victim's ports by SCAN nmap XMAS alert to
gather the active services and this appeared as service
probe. Then he/she exploits the ftp service by buffer
overflow attack (i.e. FTP command overflow attempt
and other alerts) and installs a Trojan, this abstracted in
this figure as service compromise and active
communication remote respectively. Finally the
attacker connects to a victim server through the Trojan
with BACKDOOR CDK alert that is the Trojan activity
mentioned. The second scenario aimed to get user
privileges that are satisfied by some web attacks. After
the attacker compromises web application, he/she

Table I
Correlation Performance of the proposed

system

LLDOS 1.0 LLDOS 2.0.2
DMZ Inside DMZ Inside

Correlated Alerts 122 60 6 24
Correctly Correlated Alerts 122 60 6 14
Incorrectly Correlated Alerts 0 0 0 10
Related Alerts 136 72 6 16
Missed Alerts By Snort 14 12 0 2
Completeness Measure Rc 89.7% 83.3% 100% 87.5%
Soundness Measure Rs 100% 100% 100% 58.3%

Figure 3. The SGs discovered in the inside zone
of LLDOS 1.0

Figure 4. The SG of the LLDOS 2.0.2 inside
zone

gathered information about the user account then
logged as a normal user. There are also some other
attack scenarios that our method is able to find; many
of them are port scanning followed by Buffer Overflow
attacks.

5. Discussion

From the literature, Ning et al. [1] have proposed a
correlation method to extract attack strategies from
alerts, which is similar to this work. The experimental
results show that both approaches produce similar
attack strategies. However, the difference locates in
three folds. First, they have used pre-/post-conditions
to correlate alerts whereas we used the scenario based
approach. Second, we use few rules to produce these
results whereas they have defined a large number of
rules to correlate the alerts. And finally, we have
represented the alerts by classes which reduce the
required rules. By using alert's classes to represent
scenario rules, there is ability to detect new variations
of attacks. In other words, our system is more adaptive
to the emerging of new attack patterns because we
focus on alerts classes instead of alerts themselves.

Our method provides a high-level representation
of alerts revealing the causal relationships between
them. As we have seen in Section 4, SGs generated
clearly show the strategies behind these attacks. The
SG compression is one advantage of our method.

The contribution of this paper is therefore three
folds: (1) Generate compressed and easy to understand
SGs which reflects attack scenarios. (2) Represent the

scenarios by alert classes instead of alerts themselves
which reduce the required rules. (3) The ability to pass
the missed attacks by NIDS that are located in the
middle of the scenarios.

5. Conclusion

This paper presented a systematic method for
constructing attack scenarios (or SGs) through alert
correlation, using predefined attack scenarios. The
proposed system filters out the unnecessary alerts,
clusters the alerts as subattacks, and then generates SGs
using a small set of rules and Breadth-First search
algorithm. The generated SGs correctly reflect the
multistage attacks in the datasets.

6. References

[1] Ning P., Cui Y., Reeves D. S. and Xu D., "Techniques
and tools for analyzing intrusion alerts," ACM Transactions
on Information and System Security, Vol. 7, Issue 2,pp. 1-44,
2004.

[2] Dain O.M. and Cunningham R. K, "Fusing a
heterogeneous alert stream into scenarios," Proceedings of
the 2001 ACM Workshop on Data Mining for Security
Applications, pp. 1-13, 2001.

[3] Valdes A. and Skinner K., "Probabilistic alert
correlation," Proceedings: Recent Advances in
Intrusion Detection, LNCS 2212, 54-68, 2001.

[4] Qin X. and Lee W., "Statistical causality of INFOSEC
alert data," Proceedings: Recent Advances in Intrusion
Detection, LNCS 2820; Springer-Verlag, pp. 73-93, 2003.

[5] Valeur F., Vigna G., Kruegel C. and Kemmerer R. A.,
"Comprehensive approach to intrusion detection alert
correlation," IEEE Transactions on Dependable and Secure
Computing 1 (3), pp. 146-169, 2004.

[6] Snort signature database, http://www.snort.org/pub-
bin/sigs.cgi.

[7] MIT Lincoln Lab., 2000 DARPA intrusion detection
scenario specific datasets. http://www.ll.mit.edu/IST/
ideval/data/2000/2000_data _index.html.

 [8] Def Con captures the flag (ctf) contest,
http://cctf.shmoo.com/data/cctf-defcon8/, 2000.

[9] SNORT, http://www.snort.org/, 2005.

Figure 5. The scenario graph generated from

Def Con 8 dataset

Appendix A Summery of alert's classes generated by Snort

Classes Description

Enumeration Attacker tries to identify the user name and password to exploit poorly
protected resources. e.g., FTP Bad Login alert.

Host Probe This type determines active hosts and sometimes reveals specific software
details like versions prior to launching an attack. Usually, this is the first step
of many attacks. e.g., ICMP Ping alert.

Service Probe Specifying which service running on which port is falling under this class. This
may be a precursor to an attack to exploit the vulnerability of that service. e.g.,
RPC sadmind UDP PING alert.

Service Compromise This is service attack step that exploit vulnerability (usually a buffer overflow
vulnerability) in a specific service or software to gain more privileges. e.g.,
WEB-CGI campus access alert.

User Access This class means that the attacker obtain the user (non administrator)
privileges. The alerts in this class may happen after the Enumeration's alerts
class described above. e.g., TELNET Access alert.

Root or Admin. Access Intrusive step into a target machine with the privileges of administrator.
Attacker may have access to a command shell with the same privileges. May
overlap with buffer overflow attacks classified here as Service Compromise,
but includes attacks that may exploit configuration flaws. e.g., RPC sadmind
query with root credentials attempt UDP alert.

Dos Alerts that indicate the possibility of Denial of Service attacks. e.g., DOS
IGMP dos attack alert.

System Compromise This class means that the system is infected by the attack. e.g., BAD-TRAFFIC
tcp port 0 traffic alert.

Sensitive Data Gathering This class describes the alerts that attempt to gain information on users and
groups that exist on the hosts, cookies information, browser version etc. e.g.,
INFO web bug 1x1 gif attempt alert.

Active Communication Remote Attacker's goal is to install a Trojan to facilitate further attacks. e.g.,
BACKDOOR netbus active alert.

Trojan Activity The installed Trojan tries to do some actions. e.g., BACKDOOR CDK alert.

