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Abstract 

 
The increasing use of Network Intrusion Detection 

Systems (NIDSs) and a relatively high false alert rate 
can lead to a huge volume of alerts. This makes it very 
difficult for security analysts to detect long run attacks. 
In this paper, we have proposed a system that 
represents a set of alerts as subattacks. Then 
correlates these subattacks and generates abstracted 
scenario graphs (SGs) which reflect attack scenarios. 
We have conducted the experiments using Snort as 
NIDS with different datasets that contains multistep 
attacks. The resulted compressed SGs imply that our 
method can correlate related alerts, uncover the attack 
strategies, and can detect new variations of attacks. 
 
1. Introduction 
 

When the NIDS detects a set of attacks, it will 
generate many alerts that refer to security breaches. 
Unfortunately, the NIDS cannot deduce anything from 
these separated attacks. So, alert correlation is an 
important solution to link separated attacks, to give 
alerts another meaning, and to infer attack scenarios. 

Alert correlation and analysis are a critical task in 
security management. Recently, several techniques and 
approaches have been proposed to correlate and 
analyze security alerts, most of them focus on the 
aggregation and analysis of raw security alerts, and 
build attack scenarios.  

An interesting method is the work of Ning et al. 
[1]. They were a proposed alert correlation model 
based on the observation that most intrusions consist of 
many stages, with the early stages preparing for the 
later ones. They were collected alerts from NIDS, 
correlated off-line, and tried to draw a big picture 
(through SGs) of what happens in the monitored 
network. However, there are some shortcomings 
associated with this method: 

 

 
 

• The graph explosion problem that occurs in the 
generated SGs makes the resulted graphs complex 
and hard to understand by the security analyst. 

• Huge number of rules used to draw these graphs 
which represent prerequisites and consequences of 
alerts. 

• The affects of the missed attacks by NIDS resulted 
in graphs that yield separated SGs.  
 

To address the disadvantages of this method, we 
have proposed a system that can address these 
problems. The proposed system contains three 
components: alert prioritization, alert clustering, and 
finally correlation and SG generation. Also Breadth-
First search algorithm was used to find the related 
attacks. The resulted SGs show that the proposed 
system can correlate related alerts, uncover the attack 
strategies, and can effectively simplify the analysis of 
large amounts of alerts. 

The rest of this paper is organized as follows: 
Section 2 presents related work. Section 3 states 
system architecture in details. Section 4 presents our 
experiments. Section 5 discusses the results and 
Section 6 concludes this paper.  
 
2. Related Work 
 

Many researchers propose systems that aim to 
build attack scenarios depending on various 
techniques. Dain et al. [2] use data mining approach to 
combine the alerts into scenarios in real time. The 
probabilistic alert correlation [3] based on the 
similarities between alerts to correlate them. Measures 
are defined to evaluate the degree of similarity between 
two alarms. 

Qin et al. [4] present an alert correlation system 
combining a Bayesian correlation system with a 
statistical correlation system using Granger Causality 



Test (GCT), a time series-based causal analysis 
algorithm. Based on the results of this analysis the 
GCT module constructs a correlation graph. As the 
structure of the network is predetermined, the Bayes-
based correlation module can discover alerts that have 
direct causal relationships according to domain 
knowledge. 

The work of Ning et al. [1] generates SGs 
depending on pre-/post-conditions of an individual 
alerts. They propose an alert correlation model based 
on the inherent observation that most intrusions consist 
of many stages, with the early stages preparing for the 
later ones.  The correlation model is built upon two 
aspects of intrusions that are, Prerequisites (the 
conditions for an intrusion to be successful) and 
Consequences (the possible outcome of an intrusion).  

 
3. System Architecture 
 

The proposed system is composed of three parts: 
Prioritization, Clustering, and Correlation and SG 
Generation. As shown in Fig. 1, it takes the raw alerts 
from NIDS as input then enhances alerts quality using 
alert prioritization. After that alert clustering is 
performed using classification and merging, whereas 
the similar classes produced from the classification 
will be merged. Finally, the last component generates 
SGs. 

 
 

 
Alert clustering aim is to handle the raw alerts 

produced by NIDS due to a certain attack, to produce a 
higher-level alert message, called meta-alert (MA), 
summarizing the detected attacks characteristics. 

A meta-alert is characterized by: alert class, which 
is the generalized alert type or subattack name, the 
source IP address, the target IP address, and time 
information. A reference to the log file of the NIDS is 
reported so that further investigation on the results can 
be carried out. 
 
3.1. Alert Prioritization 
 

Alert prioritization is performed to assess the 
relative importance of alerts generated by the sensors. 

This method has to take into account the security 
policy and the security requirements of the site where 
the correlation system is deployed [5]. Therefore, 
prioritizing of alerts aids in substantial reduction of 
alert volume. 
 
3.2. Alert Clustering 
 

Classification followed by aggregation is the 
clustering we refer to in this paper. The classification 
was done by using alerts abstraction. The alert 
classification scheme is designed to categorize alerts 
into groups that most effectively indicate their stage in 
a multistage attack. An alert can be part of multiple 
classes. Each class has its name that indicates the 
general category (e.g., Host Probe, User Access, 
Service Compromise, etc.). Alerts descriptions were 
taken from the Snort signature database [6]. Appendix 
A summarizes the classification scheme that we have 
performed. Aggregation will merge the similar classes 
of alerts resulted from classification within a specified 
time window.  
 
3.3. Building Scenario Graphs 
 

This component contains alert correlation and SG 
generation. In this paper, we have proposed a 
technique that builds simple SG using alert clustering 
and correlation. The correlation depends on the 
Relation Matrix (RM) that contains the similarities 
between every two MAs, and few predefined rules. 
Three measurements (having numerical values) have 
been used which are listed below. 

• Msr1: How much Similar_SourceIP(MA1,MA2)? This 
feature computes the common similar bits of two IP 
addresses from the left, and the result divided by 32. 

• Msr2: How much Similar_TargetIP(MA1,MA2)? This 
feature is computed such as the previous one. 

• Msr3: TargetIP(MA1)=SourceIP(MA2)? This feature 
is necessary because sometimes the attacker use one 
victim as a step stone to compromise another victim. 

It is very important to find the strength between 
any two MAs to correlate them together or not. 
Computation of that strength depends on the 
measurements. The correlation strength will be 
computed for all the MAs and these MAs assumed to be 
in time order. We suggest representing the correlation 
strength of any related MAs in a triangle matrix (i.e. 
RM). In this matrix V(1,3), for example, means the 
relation between MA1 and MA3 and MA1 comes before 
MA3. 

Equation (1) was used to compute the correlation 
strength value between any two MAs in RM. The 

 

Figure 1.   Proposed system components 



Is_Successor(j,i) variable in (1) is a Boolean variable 
(0 or 1) that determine if MAj can occur after MAi. If 
so, the similarities between its features will be 
computed, otherwise the value is zero. The Msrk 
variable in (1) is the kth measurement's value.  
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The Is_Successor variable can be used to pass the 
missed attacks. Assume we have a scenario (A→B→C) 
which means three attacks should occur in order. The 
Is_Successor can be set to return true if attack A 
followed by either B or C to pass the missed attack.  

Scenario graphs can be represented by nodes (i.e. 
the subattacks) and arcs (i.e. the relation between two 
subattacks). The direction of the arcs specifies the 
temporal relation. The MA here represents subattack.   

Definition1. Given MA contains one or more alerts. Let 
SMA be the set of MAs and let t(MA) is the earlier time 
in which MA has occurred. Thus it can be said that 
Class(MA) is the class of an MA that represents a 
subattack within a scenario. In a multistep attack, the 
early step of attack prepares for later ones. So we can 
build a relation Prepare-for(MA1,MA2) if Class(MA1) 
prepare for Class(MA2) in the scenario and t(MA1) ≤ 
t(MA2). For any given two MAs α and β ∈SMA, α is 
called a parent of β and β is called a child of α if the 
relation Prepare-for(α, β) is satisfied. It should be 
noted that any child can have more than one parent.   ■     

Applying the Breadth-First search algorithm 
depends on the parent-child relationship that has 
assumed in definition 1. The pseudo code of the 
proposed algorithm that builds SG is shown in Fig. 2. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Any new MA is not always linked to the latest MA 

in the generated scenario. Instead, it is connected to the 
MAs with which it has a high correlation value in RM. 
So, the representation is useful for inference with 
multiple goals of attackers. The intention of using 

graph representation for the attack scenario is to give 
the security analyst an intrinsic view of the network 
status. 

The Attach_Threshold is used to control the 
membership of one MA to the scenarios. When this 
threshold is set to be small, the resulted graphs will be 
noisy, whereas when its value is set to be high many 
real attacks do not join to its SGs. 

The generated SGs are concise and abstract. The 
references to the log file that exist in MAs can be used 
to drill-down and show more details about the low-
level alerts. 

 
4. Experiments 
 

In this section, we report the experiments we 
performed to validate the suggested method. The 
experiments were conducted with the 2000 DARPA 
datasets [7] and Defcon 8 datasets [8]. Snort (Version 
2.6.1) [9] was used because it is a freely available 
NIDS. The experiments were aimed to evaluate the 
effectiveness of our method in constructing attack 
scenarios. 
 
4.1 DARPA Dataset Experiment 
 

The 2000 DARPA scenario specific datasets 
include LLDOS 1.0 and LLDOS 2.0.2 [7]. LLDOS 1.0 
contains a series of attacks in which the attacker probes 
the network, probes the active hosts for Solaris 
Sadmind, breaks into these hosts with its 
vulnerabilities, installs the Msream DDos software on 
the three compromised hosts, and actually launches a 
DDos attack against an off-site server. We have 
performed four sets of experiments, each with either 
the DMZ or the inside network traffic of one dataset. 

The SGs discovered from the inside zone of 
LLDOS 1.0 were shown in Fig. 3. Each node 
represents a MA. The text inside the node is the class of 
the MA followed by MA ID. There are 15 MAs in this 
graph and there are no false alerts with it. Fig. 3 
contains three subgraphs from one attacker to three 
victims. Three disjoint SGs were generated because 
Snort's fails to report some parts of the scenario, i.e. 
communication of the DDoS Trojans on the 
compromised hosts and DDoS attack. 

The extracted SG from LLDOS 2.0.2 is shown in 
Fig. 4. It is clear from the mentioned SG that the 
attacker compromises one victim (i.e. 172.16.115.20) 
and installs mstream master in it. After that, he (from 
that victim) probes the network, compromises another 
victim (i.e. 172.16.112.50) and installs Mstream agent 
in it. Three false alerts correlated with resulted SG and 
to distinguish it, we have painted it in another color. 

 

Figure 2.  Pseudo-code of SG generation 
algorithm 

Input:  Stream of Meta-Alerts in time order  
Output: Scenario graphs 
 
Initialize Queue Q and Graph G; 
For each unvisited MA∈ RM { 
    Put new unvisited MA into Q and G; 
    While (! IsEmpty(Q)) { 
        Q.dequeue(ActiveMA); 
        Q.enqueue(all unvisited children of ActiveMA); 

Set ActiveMA as visited; 
 G←G ∪ ActiveMA (Connect ActiveMA to appropriate MAs 

in G using Attach_Threshold); } 
    Output G as detected scenario graph; 
    Set Q and G to empty; } 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To test the effectiveness of the proposed system, 
we have used the measures of completeness and 
soundness defined in [1]. The soundness measurement 
(Rs) evaluates the rate of true alerts that appear in SG. 
The completeness measure (Rc) looks for missing true 
alerts from SG. Equations (2) and (3) show these 
measures. The results of two measures are shown in 
Table I. 

#

#

c o rre c tly co rre lated alerts
R c

re lated alerts
=              (2) 

#

#

co rrectly co rre lated alerts
R s

c orre lated alerts
=              (3) 

The missed alerts by NIDS degrade the 
effectiveness which was the situation in our 
experiment where the missed alerts by Snort affect the 

completeness measure results as shown in Table I. 
Also the experiment was produced accepted values for 
the soundness measure except LLDOS 2.0.2 inside 
zone because there are ten incorrectly correlated alerts. 
This occurred due to Attach_Threshold value has 
reduced to catch all the real alerts. 

 

 
4.2 Def Con 8 Dataset Experiment 
 

As another case study, we applied our method on 
the Def Con 8 Capture The Flag (CTF) datasets [8]. 
Unfortunately, due to the nature of the Def Con 8 CTF 
datasets, we did not have any information about its 
scenarios. Thus, we only analyze the resulted SGs and 
discuss some of its scenarios. 

The resulted alerts from snort (after prioritization 
filtering) were 1,847,745 raw alerts. Scanning related 
alerts divided into two groups: host probe and service 
probe. Host probe alerts account for 1,255,881 (67.9 
%) while service probe alerts account for 425,398 
(23%). Other alerts include service compromise, DDos, 
Dos, etc, account for 166,466 (9.1%). The remaining 
MAs after clustering are 170,404. 

There are many scenarios in this dataset, so we 
will discuss two of them in some details. One of the 
generated SGs that contains two scenarios can be seen 
in Fig. 5. The attacker in this SG is 10.20.1.237 and the 
victim is 10.20.1.12. In the first scenario, the attacker 
scans the host to see if it is a live with an ICMP Ping 
alert and this appeared as host probe. After that he/she 
scans the victim's ports by SCAN nmap XMAS alert to 
gather the active services and this appeared as service 
probe. Then he/she exploits the ftp service by buffer 
overflow attack (i.e. FTP command overflow attempt 
and other alerts) and installs a Trojan, this abstracted in 
this figure as service compromise and active 
communication remote respectively. Finally the 
attacker connects to a victim server through the Trojan 
with BACKDOOR CDK alert that is the Trojan activity 
mentioned. The second scenario aimed to get user 
privileges that are satisfied by some web attacks. After 
the attacker compromises web application, he/she 

Table I 
Correlation Performance of the proposed 

system 
 

LLDOS 1.0 LLDOS 2.0.2  
DMZ Inside DMZ Inside

# Correlated Alerts 122 60 6 24 
# Correctly Correlated Alerts 122 60 6 14 
# Incorrectly Correlated Alerts 0 0 0 10 
# Related Alerts 136 72 6 16 
# Missed Alerts By Snort 14 12 0 2 
Completeness Measure Rc 89.7% 83.3% 100% 87.5%
Soundness Measure Rs 100% 100% 100% 58.3%

 

Figure 3.  The SGs discovered in the inside zone 
of LLDOS 1.0 

 
 

Figure 4. The SG of the LLDOS 2.0.2 inside 
zone 



gathered information about the user account then 
logged as a normal user. There are also some other 
attack scenarios that our method is able to find; many 
of them are port scanning followed by Buffer Overflow 
attacks. 

 
5. Discussion 
 

From the literature, Ning et al. [1] have proposed a 
correlation method to extract attack strategies from 
alerts, which is similar to this work. The experimental 
results show that both approaches produce similar 
attack strategies. However, the difference locates in 
three folds. First, they have used pre-/post-conditions 
to correlate alerts whereas we used the scenario based 
approach. Second, we use few rules to produce these 
results whereas they have defined a large number of 
rules to correlate the alerts. And finally, we have 
represented the alerts by classes which reduce the 
required rules. By using alert's classes to represent 
scenario rules, there is ability to detect new variations 
of attacks. In other words, our system is more adaptive 
to the emerging of new attack patterns because we 
focus on alerts classes instead of alerts themselves.  

Our method provides a high-level representation 
of alerts revealing the causal relationships between 
them. As we have seen in Section 4, SGs generated 
clearly show the strategies behind these attacks. The 
SG compression is one advantage of our method.  

The contribution of this paper is therefore three 
folds: (1) Generate compressed and easy to understand 
SGs which reflects attack scenarios. (2) Represent the 

scenarios by alert classes instead of alerts themselves 
which reduce the required rules. (3) The ability to pass 
the missed attacks by NIDS that are located in the 
middle of the scenarios. 
 
5. Conclusion 
 

This paper presented a systematic method for 
constructing attack scenarios (or SGs) through alert 
correlation, using predefined attack scenarios. The 
proposed system filters out the unnecessary alerts, 
clusters the alerts as subattacks, and then generates SGs 
using a small set of rules and Breadth-First search 
algorithm. The generated SGs correctly reflect the 
multistage attacks in the datasets. 
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Figure 5.  The scenario graph generated from 

Def Con 8 dataset 



 
 
 

Appendix A     Summery of alert's classes generated by Snort 
 

Classes Description 

Enumeration Attacker tries to identify the user name and password to exploit poorly 
protected resources. e.g., FTP Bad Login alert. 

Host Probe This type determines active hosts and sometimes reveals specific software 
details like versions prior to launching an attack. Usually, this is the first step 
of many attacks. e.g., ICMP Ping alert. 

Service Probe Specifying which service running on which port is falling under this class. This 
may be a precursor to an attack to exploit the vulnerability of that service. e.g., 
RPC sadmind UDP PING alert.  

Service Compromise This is service attack step that exploit vulnerability (usually a buffer overflow 
vulnerability) in a specific service or software to gain more privileges. e.g., 
WEB-CGI campus access alert. 

User Access This class means that the attacker obtain the user (non administrator) 
privileges. The alerts in this class may happen after the Enumeration's alerts 
class described above.  e.g., TELNET Access alert. 

Root or Admin. Access Intrusive step into a target machine with the privileges of administrator. 
Attacker may have access to a command shell with the same privileges. May 
overlap with buffer overflow attacks classified here as Service Compromise, 
but includes attacks that may exploit configuration flaws. e.g., RPC sadmind 
query with root credentials attempt UDP alert. 

Dos Alerts that indicate the possibility of Denial of Service attacks. e.g., DOS 
IGMP dos attack alert. 

System Compromise This class means that the system is infected by the attack. e.g., BAD-TRAFFIC 
tcp port 0 traffic alert. 

Sensitive Data Gathering This class describes the alerts that attempt to gain information on users and 
groups that exist on the hosts, cookies information, browser version etc. e.g., 
INFO web bug 1x1 gif attempt alert. 

Active Communication Remote Attacker's goal is to install a Trojan to facilitate further attacks.  e.g., 
BACKDOOR netbus active alert.  

Trojan Activity The installed Trojan tries to do some actions. e.g., BACKDOOR CDK alert. 
 


